Positive integer powers and inverse for one type of even order symmetric pentadiagonal matrices

نویسندگان

  • Saadet Arslan
  • Fikri Köken
  • Durmus Bozkurt
چکیده

In this study we derive the general expression for the entries of the qth power (q 2 N) for one type of even order symmetric pentadiagonal matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Inverse Problem of Constructing Symmetric Pentadiagonal Toeplitz Matrices from Three Largest Eigenvalues

The inverse problem of constructing a symmetric Toeplitz matrix with prescribed eigenvalues has been a challenge both theoretically and computationally in the literature. It is now known in theory that symmetric Toeplitz matrices can have arbitrary real spectra. This paper addresses a similar problem — Can the three largest eigenvalues of symmetric pentadiagonal Toeplitz matrices be arbitrary? ...

متن کامل

Properties of Central Symmetric X-Form Matrices

In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.

متن کامل

Eigenvalues of Hadamard powers of large symmetric Pascal matrices

Let Sn be the positive real symmetric matrix of order n with (i, j ) entry equal to ( i + j − 2 j − 1 ) , and let x be a positive real number. Eigenvalues of the Hadamard (or entry wise) power S n are considered. In particular for k a positive integer, it is shown that both the Perron root and the trace of S n are approximately equal to 4 4k−1 ( 2n− 2 n− 1 )k . © 2005 Elsevier Inc. All rights r...

متن کامل

Recurrence Relations between Symmetric Polynomials of n-th Order

The method of symmetric polynomials (MSP) was developed for computation analytical functions of matrices, in particular, integer powers of matrix. MSP does not require for its realization finding eigenvalues of the matrix. A new type of recurrence relations for symmetric polynomials of order n is found. Algorithm for the numerical calculation of high powers of the matrix is proposed.This comput...

متن کامل

Some Preconditioners for Block Pentadiagonal Linear Systems Based on New Approximate Factorization Methods

In this paper, getting an high-efficiency parallel algorithm to solve sparse block pentadiagonal linear systems suitable for vectors and parallel processors, stair matrices are used to construct some parallel polynomial approximate inverse preconditioners. These preconditioners are appropriate when the desired target is to maximize parallelism. Moreover, some theoretical results about these pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2013